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Abstract—This paper aims to give an overview of technologies 
that can be used to implement robotics within an educational 
context. We discuss complete robotics systems as well as projects 
that implement only certain elements of a robotics system, such 
as electronics, hardware, or software. We believe that Maker 
Movement and DIY trends offers many new opportunities for 
teaching and feel that they will become much more prominent in 
the future. Products and projects discussed in this paper are: 
Mindstorms, Vex, Arduino, Dwengo, Raspberry Pi, MakeBlock, 
OpenBeam, BitBeam, Scratch, Blockly and ArduBlock. 

Keywords—Do-It-Yourself; Education; Open Source; Open 
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I.  INTRODUCTION 
The demand for engineers in Europe has almost tripled over 

the past six years, while the number of engineers who graduate 
from universities and colleges in that period decreased 
drastically. Different engineers associations, such as the VIK 
(Flemish Association of Engineers) assert that the drop in 
number of students is connected to an image problem of 
STEM-related knowledge domains (Science, Technology, 
Engineering and Mathematics) as perceived by pupils and 
students. Action plans focused on promoting access to the 
engineering profession are set up, following the highlights of 
the rapid developments in this field. In addition to this, new 
pedagogical approaches are also experimented with, e.g. [1-3].  

Studies suggest that certain teaching strategies may foster 
the STEM participation and achievement and give some 
evidence that using scientific equipment and hands-on 
activities are related to higher science and mathematics 
achievement [4]. As a consequence project based education 
and problem-based learning are becoming the innovative 
approaches to engineering education and fundamental science 
education [5, 6]. Also, it seems that there is a precise 
relationship between new technologies and new pedagogical 
methods; even though this relationship is complex and not only 

instrumental, the simplest explanation is that new technologies 
are the instruments to realize new pedagogies. According to the 
model of micro worlds of Papert [7], there is a strong link 
between mental acquisition of knowledge and actual 
manipulation of the objects of knowledge. Simply put: one 
learns by doing. Nowadays, this pedagogical prospective meets 
a new frontier with the commercialization of programmable 
toys (e.g. Lego Mindstorms), the upcoming of affordable DIY 
electronics (e.g. Arduino), and the rise of FabLabs equipped 
with 3D-printers and laser cutters. These systems make it 
possible to design and construct real robots whose working is 
determined by a computer program. From the moment that 
robotics entered our houses and started influencing our 
everyday life it has become important for everyone to have at 
least a basic understanding of such technologies. To introduce 
robotics in schools, there is a methodological choice in the 
contraposition of top-down teaching and bottom-up learning.  

Building robots is a popular project choice for the 
implementation of problem-based learning (PBL) in 
classrooms. The reason why it is such a popular choice can be 
explained by the multidisciplinary nature of the topic: robotics 
requires many different scientific, technical and technological 
skills, such as physics, electronics, mathematics and 
programming. It is an ideal subject because so many different 
courses can be linked to it [8]. Additionally, robots themselves 
capture the imagination of children and teenagers, providing 
inspiration and motivation [8]. 

The PBL approach in general and the use of robotics in 
education in particular have a number of other differences with 
more traditional ways of teaching. Whereas math problems 
typically have one, and only one correct answer, PBL 
emphasizes that most real world problems have many different 
solutions. With PBL, students learn to deal with these real 
world problems using creative problem solving, an important 
real-life skill. In addition to technical skills, the PBL approach 
also allows the students to learn important social skills, such as 
communication, leadership, planning and cooperation [9]. 



 The relatively new spectrum of technologies that can be 
used to implement robotics within a standard educational 
curriculum can become very overwhelming for educators and 
their administrators who are trying to decide what is possible 
and what the costs will be to begin such programs. It is 
important that costs can be afforded without any special 
purpose grant. This does not mean that robotics is out of reach. 
Several options exist that can be leveraged to achieve very 
effective results. 

There are two ways to implement robotics in an educational 
context, either by starting from an existing robotics kit or by 
building the entire robot from scratch. Building a robot from 
scratch is typically much more difficult, thus using a kit is a 
more popular choice, especially in projects involving younger 
students. These robot kits provide everything needed to make a 
functional robot, such as building elements, motors, sensors, 
instructions, a programmable microcontroller, and the software 
to program the robot. While this provides a great starting point, 
this solution is typically more expensive and less flexible than 
a fully customized robot. 

In recent years, making a robot from scratch has become 
much easier, in part due to the many different products and 
platforms that implement some of the elements that are 
required to build a robot. They can be categorized into 3 large 
groups: software, electronics and hardware projects. 
Historically, software has been the easiest to share as Open 
Source because collaboration can be done easily over the 
internet, because development tools are readily available and 
because there is virtually no cost associated with copying or 
modifying software. Online platforms such as GitHub greatly 
facilitate this [10]. However, in recent years the electronics and 
hardware projects have taken a jump forward in a phenomenon 
sometimes referred to as the Maker Movement [11]. The 
Maker Movement is a trend that can be described as a high-
tech extension of the DIY and Arts & Crafts subcultures. It is 
characterized by the use of CNC machines such as laser 
cutters, 3D printers and CNC mills for the development and 
replication of Open Source hardware. These CNC machines are 
often low-cost devices that were developed by open source 
communities [12, 13]. 

II. CHALLENGES AND PITFALLS 
While PBL using robotics offers a promising alternative to 

the traditional teaching methods, implementing this on a large 
scale in education does pose several challenges. Mataric et al. 
[14] describe 5 big challenges: 

• “Lack of teacher time” 

• “Lack of teacher training” 

• “Lack of age-suitable academic materials” 

• “Lack of ready-for-use lesson materials” 

• “Lack of a range of affordable robotics platforms”  

 

Besides these challenges, we also detected gender issues in 
the context of robotics in education. Presently, robotics and 

other technological hobbies are usually associated with boys. 
Girls are often subtly discouraged and told to pursue other 
interests. As a result, women are underrepresented in STEM-
related fields. Studies have shown that while girls will not 
always focus on the same aspects of building robots as boys, 
they show just as much interest in the topic [8]. Consequently, 
robotics - if properly approached - can serve as a way to 
increase the number of women in technical and technological 
fields [15].  

III. COMPLETE ROBOTICS KITS 
Historically, robotics in education is usually implemented 

using premade robotics kits that include everything needed to 
build a functional robot. While this is a great way to get up and 
running quickly, it does include several disadvantages. 

• All-in-one kits are generally more expensive. 

• It’s hard to interface these kits with other components, 
such as standardized components, components made 
by third parties or off-the-shelf sensors and actuators. 

• Finding or buying replacement parts is not always 
easy. 

• Not all components are used or needed in a robot, so 
you are paying for components you do not need. 

That being said, these systems are a great starting point as 
they provide a set of compatible building blocks and 
electronics, software for easy (graphical) programming, 
instructions and a community network. 

A. Lego Mindstorms 

 

Fig. 1. Lego Mindstorms NXT [16]. 

Mindstorms [17, 18] is a product line by Lego that provides 
the necessary tools for creating simple robots using Lego 
bricks. Mindstorms is built around a programmable 
microcomputer brick that can control up to 3 motors and read 
up to 4 sensors. The motors and sensors can be hooked up to 
the control unit using snap connectors, so no special skills are 
required to assemble a functional set of robot electronics. The 
programmable brick itself can be programmed using a 
graphical programming language, named NXT-G, which is 
bundled with the sets. Alternatively, the brick can be 
programmed using one of the many available third-party 
applications, which provide support for languages such as C++ 
[19] or Java [20]. Lego Technic style bricks are used to build 
the structural parts of the robot. Because of this, building 



blocks from other Lego sets can be easily incorporated, 
expanding the potential level of intricacy of the robots.  

The ease of use, the size of the Mindstorms community and 
the familiarity of Lego bricks make this a popular choice as a 
platform for robotics in education, especially when working 
with younger children. The popularity of Mindstorms translates 
to a plethora of resources available for educators, such as the 
many books, robot contests, online communities and 
workshops built around the Mindstorms ecosystem.  

One of the main disadvantages of Lego Mindstorms is the 
cost, at a price of over €330 for the educational base set [21], 
providing enough robot sets for an entire class can quickly 
become an expensive affaire. Larger schools can alleviate this 
by buying enough sets for one group and then pass them 
around between the different class groups, but this is not 
always possible, especially for small schools or organizations. 
Another problem we’ve encountered frequently is that the 
programmable brick is limited to a maximum of 3 motors and 4 
sensors. While this is typically enough to build a multitude of 
different robots, sooner or later students want to add another 
motor or sensor to their robot, only to discover they’ve run into 
the physical limit of what Mindstorms robots can do. A third 
point of criticism is that it’s generally much harder to integrate 
third-party robotics components within a Mindstorms robot. 
Third-party sensors that can be interfaced with the Mindstorms 
programmable brick, such as those sold by MindSensors [22], 
do exist, but they typically rely on specialized circuitry for 
compatibility. Similarly, incorporating non-Lego hardware 
components into your Mindstorms robot is not always easy and 
typically involves modifying or otherwise damaging the Lego 
components. 

B. Vex 

 

Fig. 2. Protobot Robot Kit [23]. 

The Vex Robotics system [24] is similar to Lego 
Mindstorms in that it is a platform that supplies all the 
necessary elements needed to build a functional robot: 
structural components, electronics, software and instructions. 
The main difference is that while Mindstorms tends to be more 
toy-like, suited for younger children, Vex instead opts for a 
more serious approach to robotics, targeting older students and 
adults. This is evident in the way the kit works; instead of 
plastic, perforated metal beams are used as structural elements 
and connections are made using nuts and screws, instead of 
snap and friction connections. Vex offers 2 different 
microcontroller options for use with its products, the PIC 

microcontroller and the Cortex microcontroller, both of which 
can be programmed using written code, as opposed to the 
graphical programming language used in Mindstorms. Vex 
allows for much choice in its product line, whereas Mindstorms 
aims to provide everything needed in one box, Vex allows for 
much more granular choice by splitting everything up in 
separate kits. 

The Vex platform is more in line with “real” engineering 
practices than Lego Mindstorms and it offers a large degree of 
flexibility. This flexibility does make it more complex to use, 
meaning that this platform is better suited for older students 
and adults. At around €356 for a programmable starter kit [25], 
the cost of Vex seems similar to Mindstorms, however this not 
include programming software (which costs another €70) or the 
various expansion kits needed to complete a specific kind of 
robot. Mindstorms, in contrast, does include programming 
software and the components supplied in the base kit will 
typically be enough for many different types of robot projects. 
The Vex system is well documented, offering detailed 
instruction manuals, CAD models of the different parts, video 
tutorials and teacher materials. In our opinion, the main 
downsides of this platform are the high cost of the products and 
the degree of complexity, which makes it less suited for young 
children. 

IV. ELECTRONICS 
One of the core requirements for a functional robot is an 

electronics system that can read sensors, process information 
and control outputs. Many options of electronics are available 
when building a robot from scratch, making it possible to tune 
the electronics to the specific needs of your robot. 

A. Arduino 

 

Fig. 3. Arduino Leonardo [26]. 

First developed at the Ivrea Institute for Interaction Design 
in 2005, the Arduino platform is the combination of a 
microcontroller board, a set of C++ libraries and an Integrated 
Development Environment (IDE) aimed at making 
microcontrollers accessible to artists, designers and hobbyists 
[27, 28]. The board itself is based around the AVR series of 
microcontrollers, made by Atmel. It provides all the necessary 
circuitry needed to make the microcontroller functional and 
breaks out the microcontroller’s pins to easily accessible 
headers. On the software side, a multiplatform IDE bundles a 
code editor, a compiler, a linker and a programming utility into 
one preconfigured package. By preloading a boot loader onto 



the Arduino boards, it is possible to program the boards using a 
standard USB cable, without the need for an external hardware 
programmer. Writing code for Arduino boards is done in C++, 
but special libraries are provided which abstract the intricacies 
of programming microcontrollers into easy to use functions and 
classes. The combination of a low cost (€18 for an Arduino 
Leonardo board [29]) and the ease of use have made Arduino a 
very popular platform, especially among hobbyists. 

The Arduino boards are not specifically designed for use in 
robotics, but this functionality can be added through the use of 
daughter boards, called shields. These shields can be attached 
on top of an Arduino board and provide the board with extra 
functionality, such as a display or circuitry to control DC 
motors directly. Many of the Arduino and Arduino compatible 
boards use the same physical pin layout; because of this the 
shield form factor has become a de facto standard. Many 
different shields exist, providing a plethora of possible 
functionality, made by either the Arduino organization or, more 
often, by third party vendors. 

The availability of the large number of boards and shields, 
the ease of use, especially compared to other microcontrollers, 
and the low cost have all contributed to the creation of an 
Arduino ecosystem. Consequently, there is a large body of 
documentation and support available, in the form of books, 
tutorials and online communities. Arduino makes building a 
robot from scratch easier, in a low cost and flexible way. This 
low cost and flexibility does have an impact on the ease of use. 
While Arduino makes the use of microcontrollers easier, 
building robots using Arduino still requires a good working 
knowledge of both electronics and programming. For this 
reason, building robots with Arduino is significantly more 
complex than using an all-in-one solution, such as Mindstorms. 
Another problem that educators face when choosing Arduino is 
that the sheer amount of boards and shields can be 
overwhelming, so that the starting point is not always clear. 

B. Dwengo 

 

Fig. 4. Dwengo board [30]. 

The Dwengo project aims to provide an easy to use 
platform for getting started with microcontrollers, electronics 
and programming [31]. Originally started in 2009 at Ghent 
University as a microcontroller experimentation board for 
internal use, it was developed further when its potential 
benefits for education became clear. This board is built around 
the PIC series of microcontrollers, made by MicroChip. Unlike 

Arduino boards, which typically aim to provide a very low cost 
bare-bones board, the Dwengo board includes several features 
to facilitate building robots. The board includes a 16x2 
character LCD, input buttons, 2 servo connectors and a 2 
channel motor driver. In addition to the electronics board, the 
Dwengo project also provides a set of C libraries to facilitate 
programming, a set of tutorials which teach how to use board’s 
features in a step-by-step manner and an experimental web 
application to program the board using a drag & drop interface. 
Like with the Arduino, building robots with Dwengo is 
definitely more complex than using a complete system such as 
Lego Mindstorms, but this in turn allows for more flexibility 
and gives the students better insight concerning how and why 
things work. While Dwengo has some large benefits over 
Arduino, such as the built in peripherals for making robots, 
Dwengo does not have the benefit the same large ecosystem. 

C. Raspberry Pi 

 

Fig. 5. Raspberry Pi [32]. 

The Raspberry Pi is a low cost single board computer, 
developed to promote the teaching of programming and 
computer science in education [33, 34]. The boards can be 
bought for $25 (model A) or $35 (model B) and provide the 
hardware required for a simple Linux system. In addition to 2 
USB ports, an HDMI port, an SD card reader and an Ethernet 
port, the board also contains a pin header that gives access to 
low-level peripherals. The low cost combined with the access 
to these low-level peripherals make the board popular with 
hobbyists. One important thing to note is the difference 
between a microcontroller board, such as an Arduino, and a 
single-board computer, such as a Raspberry Pi. While a single-
board computer is generally much more powerful, the overhead 
caused by the operating system (OS) makes it less suitable for 
applications that require precise timing, a task at which a 
dedicated microcontroller excels. On the other hand, the high-
level nature of a Raspberry Pi makes it possible to program 
using high-level languages, to interface with more complex 
peripherals, such as webcams, and to connect to the internet. 

The Raspberry Pi lacks many of the features that are 
required to build a robot, such as the ability to control DC 
motors. Luckily, this functionality can be added using daughter 
boards, much like Arduino shields. While the Raspberry Pi 
may not be able to provide the same level of real-time control 
as a dedicated microcontroller, it does offer many advantages 
compared to more traditional solutions. The board is designed 
to run Linux; this makes it possible to make a robot using more 
powerful programming languages. Another advantage is the 
ability to easily interface with USB devices, such as webcams 



and Wi-Fi dongles, which allows for advanced robots with 
internet connectivity and image recognition capabilities. 

V. HARDWARE 
Hobbyist robot makers tend to rely on a wide variety of 

techniques when it comes to building the physical embodiment 
of their robots. Some repurpose old toy components, some 
make their robot out of cardboard, glue and duct tape, some 
even build their own metal chassis using advanced CNC 
machines. A few projects aim to facilitate this process by 
providing a standardized building system. 

A. MakeBlock 

 

Fig. 6. MakeBlock [35]. 

MakeBlock [36] is a commercial building system 
specifically aimed at building robots. The MakeBlock system 
is built around several different types of aluminium beams 
which are joined together using standard machine screws. 
These screw connections can be made using either the beam’s 
threaded slot, the grid of evenly spaced holes or the tapped 
holes at the end of a beam. In addition to these beams, several 
accessories are available, such as DC motor mounts, servo 
mounts, angle brackets and joining plates. 

The MakeBlock system is a great way to make a very rigid 
robot and the threaded slot makes it easy to connect third-party 
components to the frame. The system uses the same hole 
spacing as Lego Technic bricks, further improving 
compatibility. In our opinion, the main downsides of 
MakeBlock are the relatively high costs and the limited 
availability. 

B. OpenBeam 

 

Fig. 7. OpenBeam [37]. 

OpenBeam [38] is a small scale version of the well known 
industrial T-slot aluminium profile systems. OpenBeam was 
conceived as an Open Hardware project and was realized 
though the Kickstarter crowdsourcing platform [39]. While 
regular T-slot profiles typically use their own proprietary nuts 
and bolts, OpenBeam was specifically designed to make use of 

standard M3 nuts and bolts, which are generally much cheaper 
and more readily available. These beams can be combined 
using angle brackets to build three-dimensional structures. 
Because OpenBeam uses standard hardware and because any 
arbitrary hole spacing can be used, it is easy to connect third-
party components to the system. OpenBeam was not made 
specifically with robotics in mind, but because other 
components can be connected so easily, it does make it a viable 
way of building robots. Still, the OpenBeam system focuses on 
providing strong static connections, but offers much less in 
terms of building moving mechanisms. 

C. BitBeam 

 

Fig. 8. BitBeam [40]. 

BitBeam [41] is a miniaturized version of GridBeam, a 
building system that uses 1.5 inch square beams with regularly 
spaced holes as a construction material to build large objects 
such as furniture [42, 43]. The specific geometry of the beams 
allows for a technique called a trijoint, shown in figure 8, in 
which 3 beams are joined in a corner using only 3 bolts and 
nuts. The BitBeam variant of the GridBeam system uses 8 mm 
square beams with holes spaced at 8 mm intervals, making it 
much more suited for building small scale robots. The 8 mm 
distance was not chosen arbitrarily, the hole spacing matches 
that of Lego Technic bricks, making integration with Lego 
bricks trivial. 

The big advantage of BitBeam over other systems is its low 
cost and the fact that it can be made from a variety of materials. 
The beams shown in the examples are made by laser cutting 
holes in 5/16 inch square wooden beams, but compatible beams 
can also be made using a 3D printer or even by manually 
drilling holes using a drill press. In our experience, wooden 
beams are not as durable as similar components made from 
plastic or metal, especially because the beams are severely 
weakened by the 2 directions of holes. We have tried making 
BitBeams out of 8 mm acrylic, and while they are much more 
durable, we ran into the problem that longer beams started to 
warp significantly due to the heat caused by the laser cutting 
process. 

VI. PROGRAMMING 
Often, robots are programmed using a low-level, textual 

programming language, such as C. These textual languages can 
be quite daunting for people with no prior experience. Not only 
is it hard to translate human language concepts to algorithms a 
computer can understand, one has to take care that the syntax 



of the program is correct. Graphical programming languages 
can alleviate the latter problem, while also providing an 
interface that is more appealing to children. 

A. Scratch 

 

Fig. 9. Scratch [44]. 

Scratch, developed at MIT Media Lab in 2006, is a 
graphical programming language that aims to teach children 
the principles programming through the creation of simple 
games and interactive movies [45, 46]. Scratch features a 
display area, onto which different sprites can be placed, and a 
programming area, onto which puzzle-like programming 
blocks can be placed. These puzzle blocks can represent simple 
commands (e.g. “move 10 steps”), or more complicated control 
structures, such as loop statements (e.g. “repeat … until”) or 
conditional statements (e.g. “if … then …”). The blocks can be 
snapped together to create a logical sequence of actions, akin to 
the sequence of statements one would find in traditional code. 
Because of the different shapes of the different types of puzzle-
like blocks, they can only be combined in a way that makes 
sense, making syntax errors impossible. 

While Scratch is very much oriented at computer-centered 
use, there are some options for making Scratch interact with the 
outside world, such as Enchanting [47] and PicoBoard [48]. 
Enchanting is a variant of the Scratch application that can 
compile Scratch programs into programs that can be run on a 
Lego Mindstorms NXT intelligent brick. PicoBoard is a board 
featuring a light sensor, a sound sensor, a button, a slider and 4 
extra ports to which external sensors can be connected. While 
there are some options to make Scratch interact with the 
outside world, these options are limited and Scratch is better 
suited for computer use only. In our opinion, Scratch still 
provides a great way of learning the fundamentals of 
programming in a colorful, attractive environment. 

B. Blockly 

 

Fig. 10. Blockly [49]. 

Google Blockly [50], a programming language influenced 
by the aforementioned Scratch, is different from other 
graphical programming languages in that it’s not intended for 
direct use. Instead, Blockly can be seen as a set of libraries that 
greatly facilitates the development of a Scratch-like 
programming language. Blockly is written in Javascript and is 

intended to run inside a web browser environment. Using the 
Blockly Application Programming Interface (API), one can 
easily define its own set of blocks in order to create a fully 
customized graphical programming language. One of the 
defining features of Blockly is that it can automatically 
translate a Blockly program to readable, written code. 
Language generators for Javascript and Python already exist, 
but custom generators can also be made using the API. Blockly 
cannot be used to program robots directly (and is not meant to 
do so), but it does provide a very convenient way to design a 
language that can be used for that purpose. 

C. ArduBlock 

 

Fig. 11. Raspberry Pi [51]. 

ArduBlock [52] is a plugin application for the Arduino 
IDE. It provides an integrated tool that makes it possible to 
write Arduino programs using the same style of graphical 
blocks as Scratch and Blockly. In addition to blocks that are 
literal translations of the functions in the Arduino library, it 
also provides some predefined blocks for working with third-
party Arduino components, such as a relay or a joystick. When 
programming an Arduino board using ArduBlock, the 
graphical program is translated to regular Arduino code, not 
unlike Blockly’s language generators. This facilitates the 
transition between using graphical blocks for programming and 
using written C++ code, which is very helpful for novice 
programmers. While ArduBlocks is a great introductory tool 
for the Arduino platform, it is our opinion that there is still 
much room for improvement. It does not yet have the same 
level of attention to visual details as Blockly or Scratch, not all 
Arduino functions or features are available and some editing 
functionality (such as deleting blocks) works counter 
intuitively. Still, it is a great tool for use in education, 
especially when students have already been introduced to a 
similar language, such as Scratch. 

VII. DIY AS A NEW WAY OF TEACHING 
A DIY methodology promises to transform education from 

student observation and listening to active engagement through 
ingenious interactive hands-on lessons guided by instructors 
and augmented by examples and equipment that can be 
fabricated only when needed allowing for personalizable and 
customizable classes and individual learning within common 
frameworks.  The feasibility of a robotics-enhanced problem-
based curriculum depends on the access to versatile robotics 
tools and well-organized tutorials. We screened the available 



solutions and we carried out a series of interviews with 
educators to pin point the needs in the field when implementing 
a new curriculum. For this first round of informative interviews 
we focused on Flanders (Belgium) and a few primary and 
secondary school teachers in Italy and Switzerland. 

One situation we have encountered frequently is that 
educators choose an all-in-one robotics platform because they 
do not know of any alternatives or because they cannot find a 
clear starting point for alternative platforms. This choice is 
often further motivated because their regional colleagues tend 
to use the same platform, so there is a certain form of a support 
network. In our experience, classes that use a complete robotics 
platform, such as Mindstorms, tend to outnumber classes that 
build their own robots from scratch by a large margin. And 
while robots built with an all-in-one kit may perform better, 
students that build their own robot either completely from 
scratch, or by combining elements from the different systems 
as described above, tend to gain a much deeper understanding 
of technology, engineering and creative problem solving. Class 
groups that use a complete robotics platform also tend to stay 
within that platform, adding a third-party or a home-made 
component does not happen frequently. Robots built using a 
complete platform tend to have more functionality and are 
usually easier to build, while building robots from scratch tends 
to require more experience but also give the students more 
insight. 

We believe that the DIY techniques of the Maker 
Movement provide a good way to make building robots from 
scratch much easier, while also bridging the gap between all-
in-one platforms and DIY robots. The Maker Movement makes 
Rapid Prototyping technologies, such as laser cutting, CNC 
milling and 3D printing much more accessible to the general 
public. Whereas the use of 3D printing used to be limited to 
large organizations and businesses, this movement has created 
comparable machines, such as the many types of RepRap 
machines, which can be made for under €1000 [53]. In addition 
to the option of building your own rapid prototyping machine, 
which many not always be financially or practically possible 
for schools, other options have also become available, such as 
the use of online rapid prototyping services or the use of 
machines at a local FabLab. FabLabs are publically accessible 
local workspaces that offer access to these rapid prototyping 
machines. These FabLabs, if they are locally available, can be a 
great benefit to robotics projects in schools [54]. They offer a 
suitable space to work in, access to machines to manufacture 
parts with, and a community of like-minded people who can 
share their knowledge and experience. 

This DIY way of thinking has already gained some 
foothold within the context of small-scale robotics. Some of the 
projects we described above, such as Arduino, OpenBeam, 
BitBeam, Scratch, Blockly and ArduBlock are Open Source 
and/or Open Hardware. However, this phenomenon is not 
limited to these projects. Thingiverse [55], an online repository 
for design files of physical objects, lists many different types of 
DIY robot projects, ranging from very simple parts (e.g. a 
mounting plate to connect an Arduino to Lego bricks [56]) to 
small wheeled robots (e.g. MiniSkybot [57]) to very complex 
robots (e.g. humanoid robot InMoov [58]). Another great 
example of this DIY way of thinking being applied in 

education is Arvind Gupta’s Toys from Trash project [59, 60], 
which is a website that lists a plethora of small scientific 
experiments, all of which can be made with very cheap 
materials. 

VIII. CONCLUSION 
In this paper, we have presented a summary of products and 

projects that can be used as tools for enabling robotics projects 
in education. The categories we discussed are complete, all-in-
one robotics platforms, electronics, hardware, and software. 
Generally speaking, there are 2 ways to build a robot: either by 
using a complete robotics platform, or by constructing a robot 
from scratch. Complete systems are easier to use, allow for 
quicker results and are better suited for young students. The 
downside is that they are generally more expensive and less 
flexible. Building a robot from scratch, in contrast, is much 
harder and is more suited for older students, but gives much 
better insight in the technology, is more flexible and can be 
much cheaper. In recent years, building a robot from scratch 
has become much easier due to numerous projects and products 
that implement certain aspects of a robot, such as hardware, 
software or electronics. These product and projects can often 
be linked to the recent DIY and Maker Movement trends. 
These trends are characterized by the use of CNC machines 
and the collaboration over the internet to create physical 
hardware projects. We believe that the DIY and Maker 
subculture can have a valuable impact on education, as it not 
only encourages young people’s interest in STEM-related 
fields, it also fosters creativity and technological fluency. All of 
these skills will undoubtedly be vital in the society of 
tomorrow. 
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