
Overview of Technologies for Building Robots in the
Classroom

Cesar Vandevelde
Dept. of Industrial System & Product design

Ghent University
Kortrijk, Belgium

cesar.vandevelde@howest.be

Maria-Cristina Ciocci
Dept. of Industrial System & Product design

Ghent University
Kortrijk, Belgium

maria-cristina.ciocci@howest.be

Jelle Saldien
Dept. of Industrial System & Product design

Ghent University
Kortrijk, Belgium

jelle.saldien@howest.be

Bram Vanderborght
Dept. of Mechanical Engineering

VUB
Brussels, Belgium

bram.vanderborght@vub.ac.be

Abstract—This paper aims to give an overview of technologies
that can be used to implement robotics within an educational
context. We discuss complete robotics systems as well as projects
that implement only certain elements of a robotics system, such
as electronics, hardware, or software. We believe that Maker
Movement and DIY trends offers many new opportunities for
teaching and feel that they will become much more prominent in
the future. Products and projects discussed in this paper are:
Mindstorms, Vex, Arduino, Dwengo, Raspberry Pi, MakeBlock,
OpenBeam, BitBeam, Scratch, Blockly and ArduBlock.

Keywords—Do-It-Yourself; Education; Open Source; Open
Hardware; Project Based Learning; Rapid Prototyping; Robotics;
STEM

I. INTRODUCTION
The demand for engineers in Europe has almost tripled over

the past six years, while the number of engineers who graduate
from universities and colleges in that period decreased
drastically. Different engineers associations, such as the VIK
(Flemish Association of Engineers) assert that the drop in
number of students is connected to an image problem of
STEM-related knowledge domains (Science, Technology,
Engineering and Mathematics) as perceived by pupils and
students. Action plans focused on promoting access to the
engineering profession are set up, following the highlights of
the rapid developments in this field. In addition to this, new
pedagogical approaches are also experimented with, e.g. [1-3].

Studies suggest that certain teaching strategies may foster
the STEM participation and achievement and give some
evidence that using scientific equipment and hands-on
activities are related to higher science and mathematics
achievement [4]. As a consequence project based education
and problem-based learning are becoming the innovative
approaches to engineering education and fundamental science
education [5, 6]. Also, it seems that there is a precise
relationship between new technologies and new pedagogical
methods; even though this relationship is complex and not only

instrumental, the simplest explanation is that new technologies
are the instruments to realize new pedagogies. According to the
model of micro worlds of Papert [7], there is a strong link
between mental acquisition of knowledge and actual
manipulation of the objects of knowledge. Simply put: one
learns by doing. Nowadays, this pedagogical prospective meets
a new frontier with the commercialization of programmable
toys (e.g. Lego Mindstorms), the upcoming of affordable DIY
electronics (e.g. Arduino), and the rise of FabLabs equipped
with 3D-printers and laser cutters. These systems make it
possible to design and construct real robots whose working is
determined by a computer program. From the moment that
robotics entered our houses and started influencing our
everyday life it has become important for everyone to have at
least a basic understanding of such technologies. To introduce
robotics in schools, there is a methodological choice in the
contraposition of top-down teaching and bottom-up learning.

Building robots is a popular project choice for the
implementation of problem-based learning (PBL) in
classrooms. The reason why it is such a popular choice can be
explained by the multidisciplinary nature of the topic: robotics
requires many different scientific, technical and technological
skills, such as physics, electronics, mathematics and
programming. It is an ideal subject because so many different
courses can be linked to it [8]. Additionally, robots themselves
capture the imagination of children and teenagers, providing
inspiration and motivation [8].

The PBL approach in general and the use of robotics in
education in particular have a number of other differences with
more traditional ways of teaching. Whereas math problems
typically have one, and only one correct answer, PBL
emphasizes that most real world problems have many different
solutions. With PBL, students learn to deal with these real
world problems using creative problem solving, an important
real-life skill. In addition to technical skills, the PBL approach
also allows the students to learn important social skills, such as
communication, leadership, planning and cooperation [9].

 The relatively new spectrum of technologies that can be
used to implement robotics within a standard educational
curriculum can become very overwhelming for educators and
their administrators who are trying to decide what is possible
and what the costs will be to begin such programs. It is
important that costs can be afforded without any special
purpose grant. This does not mean that robotics is out of reach.
Several options exist that can be leveraged to achieve very
effective results.

There are two ways to implement robotics in an educational
context, either by starting from an existing robotics kit or by
building the entire robot from scratch. Building a robot from
scratch is typically much more difficult, thus using a kit is a
more popular choice, especially in projects involving younger
students. These robot kits provide everything needed to make a
functional robot, such as building elements, motors, sensors,
instructions, a programmable microcontroller, and the software
to program the robot. While this provides a great starting point,
this solution is typically more expensive and less flexible than
a fully customized robot.

In recent years, making a robot from scratch has become
much easier, in part due to the many different products and
platforms that implement some of the elements that are
required to build a robot. They can be categorized into 3 large
groups: software, electronics and hardware projects.
Historically, software has been the easiest to share as Open
Source because collaboration can be done easily over the
internet, because development tools are readily available and
because there is virtually no cost associated with copying or
modifying software. Online platforms such as GitHub greatly
facilitate this [10]. However, in recent years the electronics and
hardware projects have taken a jump forward in a phenomenon
sometimes referred to as the Maker Movement [11]. The
Maker Movement is a trend that can be described as a high-
tech extension of the DIY and Arts & Crafts subcultures. It is
characterized by the use of CNC machines such as laser
cutters, 3D printers and CNC mills for the development and
replication of Open Source hardware. These CNC machines are
often low-cost devices that were developed by open source
communities [12, 13].

II. CHALLENGES AND PITFALLS
While PBL using robotics offers a promising alternative to

the traditional teaching methods, implementing this on a large
scale in education does pose several challenges. Mataric et al.
[14] describe 5 big challenges:

• “Lack of teacher time”

• “Lack of teacher training”

• “Lack of age-suitable academic materials”

• “Lack of ready-for-use lesson materials”

• “Lack of a range of affordable robotics platforms”

Besides these challenges, we also detected gender issues in
the context of robotics in education. Presently, robotics and

other technological hobbies are usually associated with boys.
Girls are often subtly discouraged and told to pursue other
interests. As a result, women are underrepresented in STEM-
related fields. Studies have shown that while girls will not
always focus on the same aspects of building robots as boys,
they show just as much interest in the topic [8]. Consequently,
robotics - if properly approached - can serve as a way to
increase the number of women in technical and technological
fields [15].

III. COMPLETE ROBOTICS KITS
Historically, robotics in education is usually implemented

using premade robotics kits that include everything needed to
build a functional robot. While this is a great way to get up and
running quickly, it does include several disadvantages.

• All-in-one kits are generally more expensive.

• It’s hard to interface these kits with other components,
such as standardized components, components made
by third parties or off-the-shelf sensors and actuators.

• Finding or buying replacement parts is not always
easy.

• Not all components are used or needed in a robot, so
you are paying for components you do not need.

That being said, these systems are a great starting point as
they provide a set of compatible building blocks and
electronics, software for easy (graphical) programming,
instructions and a community network.

A. Lego Mindstorms

Fig. 1. Lego Mindstorms NXT [16].

Mindstorms [17, 18] is a product line by Lego that provides
the necessary tools for creating simple robots using Lego
bricks. Mindstorms is built around a programmable
microcomputer brick that can control up to 3 motors and read
up to 4 sensors. The motors and sensors can be hooked up to
the control unit using snap connectors, so no special skills are
required to assemble a functional set of robot electronics. The
programmable brick itself can be programmed using a
graphical programming language, named NXT-G, which is
bundled with the sets. Alternatively, the brick can be
programmed using one of the many available third-party
applications, which provide support for languages such as C++
[19] or Java [20]. Lego Technic style bricks are used to build
the structural parts of the robot. Because of this, building

blocks from other Lego sets can be easily incorporated,
expanding the potential level of intricacy of the robots.

The ease of use, the size of the Mindstorms community and
the familiarity of Lego bricks make this a popular choice as a
platform for robotics in education, especially when working
with younger children. The popularity of Mindstorms translates
to a plethora of resources available for educators, such as the
many books, robot contests, online communities and
workshops built around the Mindstorms ecosystem.

One of the main disadvantages of Lego Mindstorms is the
cost, at a price of over €330 for the educational base set [21],
providing enough robot sets for an entire class can quickly
become an expensive affaire. Larger schools can alleviate this
by buying enough sets for one group and then pass them
around between the different class groups, but this is not
always possible, especially for small schools or organizations.
Another problem we’ve encountered frequently is that the
programmable brick is limited to a maximum of 3 motors and 4
sensors. While this is typically enough to build a multitude of
different robots, sooner or later students want to add another
motor or sensor to their robot, only to discover they’ve run into
the physical limit of what Mindstorms robots can do. A third
point of criticism is that it’s generally much harder to integrate
third-party robotics components within a Mindstorms robot.
Third-party sensors that can be interfaced with the Mindstorms
programmable brick, such as those sold by MindSensors [22],
do exist, but they typically rely on specialized circuitry for
compatibility. Similarly, incorporating non-Lego hardware
components into your Mindstorms robot is not always easy and
typically involves modifying or otherwise damaging the Lego
components.

B. Vex

Fig. 2. Protobot Robot Kit [23].

The Vex Robotics system [24] is similar to Lego
Mindstorms in that it is a platform that supplies all the
necessary elements needed to build a functional robot:
structural components, electronics, software and instructions.
The main difference is that while Mindstorms tends to be more
toy-like, suited for younger children, Vex instead opts for a
more serious approach to robotics, targeting older students and
adults. This is evident in the way the kit works; instead of
plastic, perforated metal beams are used as structural elements
and connections are made using nuts and screws, instead of
snap and friction connections. Vex offers 2 different
microcontroller options for use with its products, the PIC

microcontroller and the Cortex microcontroller, both of which
can be programmed using written code, as opposed to the
graphical programming language used in Mindstorms. Vex
allows for much choice in its product line, whereas Mindstorms
aims to provide everything needed in one box, Vex allows for
much more granular choice by splitting everything up in
separate kits.

The Vex platform is more in line with “real” engineering
practices than Lego Mindstorms and it offers a large degree of
flexibility. This flexibility does make it more complex to use,
meaning that this platform is better suited for older students
and adults. At around €356 for a programmable starter kit [25],
the cost of Vex seems similar to Mindstorms, however this not
include programming software (which costs another €70) or the
various expansion kits needed to complete a specific kind of
robot. Mindstorms, in contrast, does include programming
software and the components supplied in the base kit will
typically be enough for many different types of robot projects.
The Vex system is well documented, offering detailed
instruction manuals, CAD models of the different parts, video
tutorials and teacher materials. In our opinion, the main
downsides of this platform are the high cost of the products and
the degree of complexity, which makes it less suited for young
children.

IV. ELECTRONICS
One of the core requirements for a functional robot is an

electronics system that can read sensors, process information
and control outputs. Many options of electronics are available
when building a robot from scratch, making it possible to tune
the electronics to the specific needs of your robot.

A. Arduino

Fig. 3. Arduino Leonardo [26].

First developed at the Ivrea Institute for Interaction Design
in 2005, the Arduino platform is the combination of a
microcontroller board, a set of C++ libraries and an Integrated
Development Environment (IDE) aimed at making
microcontrollers accessible to artists, designers and hobbyists
[27, 28]. The board itself is based around the AVR series of
microcontrollers, made by Atmel. It provides all the necessary
circuitry needed to make the microcontroller functional and
breaks out the microcontroller’s pins to easily accessible
headers. On the software side, a multiplatform IDE bundles a
code editor, a compiler, a linker and a programming utility into
one preconfigured package. By preloading a boot loader onto

the Arduino boards, it is possible to program the boards using a
standard USB cable, without the need for an external hardware
programmer. Writing code for Arduino boards is done in C++,
but special libraries are provided which abstract the intricacies
of programming microcontrollers into easy to use functions and
classes. The combination of a low cost (€18 for an Arduino
Leonardo board [29]) and the ease of use have made Arduino a
very popular platform, especially among hobbyists.

The Arduino boards are not specifically designed for use in
robotics, but this functionality can be added through the use of
daughter boards, called shields. These shields can be attached
on top of an Arduino board and provide the board with extra
functionality, such as a display or circuitry to control DC
motors directly. Many of the Arduino and Arduino compatible
boards use the same physical pin layout; because of this the
shield form factor has become a de facto standard. Many
different shields exist, providing a plethora of possible
functionality, made by either the Arduino organization or, more
often, by third party vendors.

The availability of the large number of boards and shields,
the ease of use, especially compared to other microcontrollers,
and the low cost have all contributed to the creation of an
Arduino ecosystem. Consequently, there is a large body of
documentation and support available, in the form of books,
tutorials and online communities. Arduino makes building a
robot from scratch easier, in a low cost and flexible way. This
low cost and flexibility does have an impact on the ease of use.
While Arduino makes the use of microcontrollers easier,
building robots using Arduino still requires a good working
knowledge of both electronics and programming. For this
reason, building robots with Arduino is significantly more
complex than using an all-in-one solution, such as Mindstorms.
Another problem that educators face when choosing Arduino is
that the sheer amount of boards and shields can be
overwhelming, so that the starting point is not always clear.

B. Dwengo

Fig. 4. Dwengo board [30].

The Dwengo project aims to provide an easy to use
platform for getting started with microcontrollers, electronics
and programming [31]. Originally started in 2009 at Ghent
University as a microcontroller experimentation board for
internal use, it was developed further when its potential
benefits for education became clear. This board is built around
the PIC series of microcontrollers, made by MicroChip. Unlike

Arduino boards, which typically aim to provide a very low cost
bare-bones board, the Dwengo board includes several features
to facilitate building robots. The board includes a 16x2
character LCD, input buttons, 2 servo connectors and a 2
channel motor driver. In addition to the electronics board, the
Dwengo project also provides a set of C libraries to facilitate
programming, a set of tutorials which teach how to use board’s
features in a step-by-step manner and an experimental web
application to program the board using a drag & drop interface.
Like with the Arduino, building robots with Dwengo is
definitely more complex than using a complete system such as
Lego Mindstorms, but this in turn allows for more flexibility
and gives the students better insight concerning how and why
things work. While Dwengo has some large benefits over
Arduino, such as the built in peripherals for making robots,
Dwengo does not have the benefit the same large ecosystem.

C. Raspberry Pi

Fig. 5. Raspberry Pi [32].

The Raspberry Pi is a low cost single board computer,
developed to promote the teaching of programming and
computer science in education [33, 34]. The boards can be
bought for $25 (model A) or $35 (model B) and provide the
hardware required for a simple Linux system. In addition to 2
USB ports, an HDMI port, an SD card reader and an Ethernet
port, the board also contains a pin header that gives access to
low-level peripherals. The low cost combined with the access
to these low-level peripherals make the board popular with
hobbyists. One important thing to note is the difference
between a microcontroller board, such as an Arduino, and a
single-board computer, such as a Raspberry Pi. While a single-
board computer is generally much more powerful, the overhead
caused by the operating system (OS) makes it less suitable for
applications that require precise timing, a task at which a
dedicated microcontroller excels. On the other hand, the high-
level nature of a Raspberry Pi makes it possible to program
using high-level languages, to interface with more complex
peripherals, such as webcams, and to connect to the internet.

The Raspberry Pi lacks many of the features that are
required to build a robot, such as the ability to control DC
motors. Luckily, this functionality can be added using daughter
boards, much like Arduino shields. While the Raspberry Pi
may not be able to provide the same level of real-time control
as a dedicated microcontroller, it does offer many advantages
compared to more traditional solutions. The board is designed
to run Linux; this makes it possible to make a robot using more
powerful programming languages. Another advantage is the
ability to easily interface with USB devices, such as webcams

and Wi-Fi dongles, which allows for advanced robots with
internet connectivity and image recognition capabilities.

V. HARDWARE
Hobbyist robot makers tend to rely on a wide variety of

techniques when it comes to building the physical embodiment
of their robots. Some repurpose old toy components, some
make their robot out of cardboard, glue and duct tape, some
even build their own metal chassis using advanced CNC
machines. A few projects aim to facilitate this process by
providing a standardized building system.

A. MakeBlock

Fig. 6. MakeBlock [35].

MakeBlock [36] is a commercial building system
specifically aimed at building robots. The MakeBlock system
is built around several different types of aluminium beams
which are joined together using standard machine screws.
These screw connections can be made using either the beam’s
threaded slot, the grid of evenly spaced holes or the tapped
holes at the end of a beam. In addition to these beams, several
accessories are available, such as DC motor mounts, servo
mounts, angle brackets and joining plates.

The MakeBlock system is a great way to make a very rigid
robot and the threaded slot makes it easy to connect third-party
components to the frame. The system uses the same hole
spacing as Lego Technic bricks, further improving
compatibility. In our opinion, the main downsides of
MakeBlock are the relatively high costs and the limited
availability.

B. OpenBeam

Fig. 7. OpenBeam [37].

OpenBeam [38] is a small scale version of the well known
industrial T-slot aluminium profile systems. OpenBeam was
conceived as an Open Hardware project and was realized
though the Kickstarter crowdsourcing platform [39]. While
regular T-slot profiles typically use their own proprietary nuts
and bolts, OpenBeam was specifically designed to make use of

standard M3 nuts and bolts, which are generally much cheaper
and more readily available. These beams can be combined
using angle brackets to build three-dimensional structures.
Because OpenBeam uses standard hardware and because any
arbitrary hole spacing can be used, it is easy to connect third-
party components to the system. OpenBeam was not made
specifically with robotics in mind, but because other
components can be connected so easily, it does make it a viable
way of building robots. Still, the OpenBeam system focuses on
providing strong static connections, but offers much less in
terms of building moving mechanisms.

C. BitBeam

Fig. 8. BitBeam [40].

BitBeam [41] is a miniaturized version of GridBeam, a
building system that uses 1.5 inch square beams with regularly
spaced holes as a construction material to build large objects
such as furniture [42, 43]. The specific geometry of the beams
allows for a technique called a trijoint, shown in figure 8, in
which 3 beams are joined in a corner using only 3 bolts and
nuts. The BitBeam variant of the GridBeam system uses 8 mm
square beams with holes spaced at 8 mm intervals, making it
much more suited for building small scale robots. The 8 mm
distance was not chosen arbitrarily, the hole spacing matches
that of Lego Technic bricks, making integration with Lego
bricks trivial.

The big advantage of BitBeam over other systems is its low
cost and the fact that it can be made from a variety of materials.
The beams shown in the examples are made by laser cutting
holes in 5/16 inch square wooden beams, but compatible beams
can also be made using a 3D printer or even by manually
drilling holes using a drill press. In our experience, wooden
beams are not as durable as similar components made from
plastic or metal, especially because the beams are severely
weakened by the 2 directions of holes. We have tried making
BitBeams out of 8 mm acrylic, and while they are much more
durable, we ran into the problem that longer beams started to
warp significantly due to the heat caused by the laser cutting
process.

VI. PROGRAMMING
Often, robots are programmed using a low-level, textual

programming language, such as C. These textual languages can
be quite daunting for people with no prior experience. Not only
is it hard to translate human language concepts to algorithms a
computer can understand, one has to take care that the syntax

of the program is correct. Graphical programming languages
can alleviate the latter problem, while also providing an
interface that is more appealing to children.

A. Scratch

Fig. 9. Scratch [44].

Scratch, developed at MIT Media Lab in 2006, is a
graphical programming language that aims to teach children
the principles programming through the creation of simple
games and interactive movies [45, 46]. Scratch features a
display area, onto which different sprites can be placed, and a
programming area, onto which puzzle-like programming
blocks can be placed. These puzzle blocks can represent simple
commands (e.g. “move 10 steps”), or more complicated control
structures, such as loop statements (e.g. “repeat … until”) or
conditional statements (e.g. “if … then …”). The blocks can be
snapped together to create a logical sequence of actions, akin to
the sequence of statements one would find in traditional code.
Because of the different shapes of the different types of puzzle-
like blocks, they can only be combined in a way that makes
sense, making syntax errors impossible.

While Scratch is very much oriented at computer-centered
use, there are some options for making Scratch interact with the
outside world, such as Enchanting [47] and PicoBoard [48].
Enchanting is a variant of the Scratch application that can
compile Scratch programs into programs that can be run on a
Lego Mindstorms NXT intelligent brick. PicoBoard is a board
featuring a light sensor, a sound sensor, a button, a slider and 4
extra ports to which external sensors can be connected. While
there are some options to make Scratch interact with the
outside world, these options are limited and Scratch is better
suited for computer use only. In our opinion, Scratch still
provides a great way of learning the fundamentals of
programming in a colorful, attractive environment.

B. Blockly

Fig. 10. Blockly [49].

Google Blockly [50], a programming language influenced
by the aforementioned Scratch, is different from other
graphical programming languages in that it’s not intended for
direct use. Instead, Blockly can be seen as a set of libraries that
greatly facilitates the development of a Scratch-like
programming language. Blockly is written in Javascript and is

intended to run inside a web browser environment. Using the
Blockly Application Programming Interface (API), one can
easily define its own set of blocks in order to create a fully
customized graphical programming language. One of the
defining features of Blockly is that it can automatically
translate a Blockly program to readable, written code.
Language generators for Javascript and Python already exist,
but custom generators can also be made using the API. Blockly
cannot be used to program robots directly (and is not meant to
do so), but it does provide a very convenient way to design a
language that can be used for that purpose.

C. ArduBlock

Fig. 11. Raspberry Pi [51].

ArduBlock [52] is a plugin application for the Arduino
IDE. It provides an integrated tool that makes it possible to
write Arduino programs using the same style of graphical
blocks as Scratch and Blockly. In addition to blocks that are
literal translations of the functions in the Arduino library, it
also provides some predefined blocks for working with third-
party Arduino components, such as a relay or a joystick. When
programming an Arduino board using ArduBlock, the
graphical program is translated to regular Arduino code, not
unlike Blockly’s language generators. This facilitates the
transition between using graphical blocks for programming and
using written C++ code, which is very helpful for novice
programmers. While ArduBlocks is a great introductory tool
for the Arduino platform, it is our opinion that there is still
much room for improvement. It does not yet have the same
level of attention to visual details as Blockly or Scratch, not all
Arduino functions or features are available and some editing
functionality (such as deleting blocks) works counter
intuitively. Still, it is a great tool for use in education,
especially when students have already been introduced to a
similar language, such as Scratch.

VII. DIY AS A NEW WAY OF TEACHING
A DIY methodology promises to transform education from

student observation and listening to active engagement through
ingenious interactive hands-on lessons guided by instructors
and augmented by examples and equipment that can be
fabricated only when needed allowing for personalizable and
customizable classes and individual learning within common
frameworks. The feasibility of a robotics-enhanced problem-
based curriculum depends on the access to versatile robotics
tools and well-organized tutorials. We screened the available

solutions and we carried out a series of interviews with
educators to pin point the needs in the field when implementing
a new curriculum. For this first round of informative interviews
we focused on Flanders (Belgium) and a few primary and
secondary school teachers in Italy and Switzerland.

One situation we have encountered frequently is that
educators choose an all-in-one robotics platform because they
do not know of any alternatives or because they cannot find a
clear starting point for alternative platforms. This choice is
often further motivated because their regional colleagues tend
to use the same platform, so there is a certain form of a support
network. In our experience, classes that use a complete robotics
platform, such as Mindstorms, tend to outnumber classes that
build their own robots from scratch by a large margin. And
while robots built with an all-in-one kit may perform better,
students that build their own robot either completely from
scratch, or by combining elements from the different systems
as described above, tend to gain a much deeper understanding
of technology, engineering and creative problem solving. Class
groups that use a complete robotics platform also tend to stay
within that platform, adding a third-party or a home-made
component does not happen frequently. Robots built using a
complete platform tend to have more functionality and are
usually easier to build, while building robots from scratch tends
to require more experience but also give the students more
insight.

We believe that the DIY techniques of the Maker
Movement provide a good way to make building robots from
scratch much easier, while also bridging the gap between all-
in-one platforms and DIY robots. The Maker Movement makes
Rapid Prototyping technologies, such as laser cutting, CNC
milling and 3D printing much more accessible to the general
public. Whereas the use of 3D printing used to be limited to
large organizations and businesses, this movement has created
comparable machines, such as the many types of RepRap
machines, which can be made for under €1000 [53]. In addition
to the option of building your own rapid prototyping machine,
which many not always be financially or practically possible
for schools, other options have also become available, such as
the use of online rapid prototyping services or the use of
machines at a local FabLab. FabLabs are publically accessible
local workspaces that offer access to these rapid prototyping
machines. These FabLabs, if they are locally available, can be a
great benefit to robotics projects in schools [54]. They offer a
suitable space to work in, access to machines to manufacture
parts with, and a community of like-minded people who can
share their knowledge and experience.

This DIY way of thinking has already gained some
foothold within the context of small-scale robotics. Some of the
projects we described above, such as Arduino, OpenBeam,
BitBeam, Scratch, Blockly and ArduBlock are Open Source
and/or Open Hardware. However, this phenomenon is not
limited to these projects. Thingiverse [55], an online repository
for design files of physical objects, lists many different types of
DIY robot projects, ranging from very simple parts (e.g. a
mounting plate to connect an Arduino to Lego bricks [56]) to
small wheeled robots (e.g. MiniSkybot [57]) to very complex
robots (e.g. humanoid robot InMoov [58]). Another great
example of this DIY way of thinking being applied in

education is Arvind Gupta’s Toys from Trash project [59, 60],
which is a website that lists a plethora of small scientific
experiments, all of which can be made with very cheap
materials.

VIII. CONCLUSION
In this paper, we have presented a summary of products and

projects that can be used as tools for enabling robotics projects
in education. The categories we discussed are complete, all-in-
one robotics platforms, electronics, hardware, and software.
Generally speaking, there are 2 ways to build a robot: either by
using a complete robotics platform, or by constructing a robot
from scratch. Complete systems are easier to use, allow for
quicker results and are better suited for young students. The
downside is that they are generally more expensive and less
flexible. Building a robot from scratch, in contrast, is much
harder and is more suited for older students, but gives much
better insight in the technology, is more flexible and can be
much cheaper. In recent years, building a robot from scratch
has become much easier due to numerous projects and products
that implement certain aspects of a robot, such as hardware,
software or electronics. These product and projects can often
be linked to the recent DIY and Maker Movement trends.
These trends are characterized by the use of CNC machines
and the collaboration over the internet to create physical
hardware projects. We believe that the DIY and Maker
subculture can have a valuable impact on education, as it not
only encourages young people’s interest in STEM-related
fields, it also fosters creativity and technological fluency. All of
these skills will undoubtedly be vital in the society of
tomorrow.

REFERENCES
[1] W. Sunthonkanokpong, "Future Global Visions of

Engineering Education," Procedia Engineering, vol.
8, pp. 160-164, 2011.

[2] J. Perkins, "Education in process systems
engineering: past, present and future," Computers &
chemical engineering, vol. 26, pp. 283-293, 2002.

[3] M. Molzahn, "Chemical Engineering Education in
Europe," Chemical Engineering Research and
Design, vol. 82, pp. 1525-1532, 2008.

[4] P. B. Campbell, E. Jolly, L. Hoey, and L. K. Perlman,
"Upping the Numbers: Using Research-Based
Decision Making To Increase Diversity in the
Quantitative Disciplines," 2002.

[5] I. Ríos, A. Cazorla, J. M. Díaz-Puente, and J. L.
Yagüe, "Project–based learning in engineering higher
education: two decades of teaching competences in
real environments," Procedia-Social and Behavioral
Sciences, vol. 2, pp. 1368-1378, 2010.

[6] O. Ates and A. Eryilmaz, "Factors affecting
performance of tutors during problem-based learning
implementations," Procedia-Social and Behavioral
Sciences, vol. 2, pp. 2325-2329, 2010.

[7] S. Papert, Mindstorms: Children, computers, and
powerful ideas: Basic Books, Inc., 1980.

[8] J. Johnson, "Children, robotics, and education,"
Artificial Life and Robotics, vol. 7, pp. 16-21, 2003.

[9] S. Bell, "Project-based learning for the 21st century:
Skills for the future," The Clearing House, vol. 83,
pp. 39-43, 2010.

[10] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb,
"Social coding in github: transparency and
collaboration in an open software repository," in
Proceedings of the ACM 2012 conference on
Computer Supported Cooperative Work, 2012, pp.
1277-1286.

[11] D. Dougherty, "The Maker Movement," Innovations:
Technology, Governance, Globalization, vol. 7, pp.
11-14, 2012.

[12] R. Jones, P. Haufe, E. Sells, P. Iravani, V. Olliver, C.
Palmer, et al., "RepRap–the replicating rapid
prototyper," Robotica, vol. 29, pp. 177-191, 2011.

[13] E. Ford. (2013). ShapeOko. Available:
http://www.shapeoko.com/

[14] M. J. Mataric, N. Koenig, and D. Feil-Seifer,
"Materials for enabling hands-on robotics and STEM
education," 2007.

[15] S. Hartmann, H. Wiesner, and A. Wiesner-Steiner,
"Robotics and gender: The use of robotics for the
empowerment of girls in the classroom," in Gender
Designs IT, ed: Springer, 2007, pp. 175-188.

[16] Lego, "The NXT Technology,"
http://cache.lego.com/upload/contentTemplating/Min
dstorms2History/images/picB2F61C4781F076001D
A7E229CE695D81.jpg, Ed., ed, 2013.

[17] Lego. (2013). LEGO.com MINDSTORMS: Home.
Available: http://mindstorms.lego.com

[18] G. J. Ferrer, "Using Lego Mindstorms NXT in the
classroom," Journal of Computing Sciences in
Colleges, vol. 23, pp. 153-153, 2008.

[19] T. Chikamasa. (2013). nxtOSEK: Index. Available:
http://lejos-osek.sourceforge.net/

[20] J. Solórzano. (2013). LeJOS, Java for Lego
Mindstorms / NXJ. Available:
http://lejos.sourceforge.net/nxj.php

[21] Rato. (2013). LEGO Education. Available:
http://www.mindstormsnxt.be/

[22] Mindsensors. (2013). Mindsensors. Available:
http://www.mindsensors.com/

[23] VEX, "VEX Protobot Robot Kit,"
http://www.vexrobotics.com/media/catalog/product/c
ache/103/image/5e06319eda06f020e43594a9c23097
2d/P/r/Protobot.jpg, Ed., ed, 2013.

[24] InnovationFirstInternational. (2013). VEX - VEX
Robotics. Available: http://www.vexrobotics.com/vex

[25] InnovationFirstInternational. (2013). Programming
Control Starter Kit - VEX Robotics. Available:
http://www.vexrobotics.com/276-2750.html

[26] Arduino, "ArduinoBoardLeonardo,"
http://arduino.cc/en/uploads/Main/ArduinoLeonardoF
ront_2.jpg, Ed., ed, 2013.

[27] Arduino. (2013). Arduino. Available:
http://arduino.cc

[28] D. Mellis, M. Banzi, D. Cuartielles, and T. Igoe,
"Arduino: An open electronic prototyping platform,"
in Proc. CHI vol. 2007, ed, 2007.

[29] Arduino. (2013). Arduino Leonardo (+headers)
[A000057] - €18.00 : Arduino Store - community and
electronics. Available:
http://store.arduino.cc/eu/index.php?main_page=prod
uct_info&cPath=11_12&products_id=226

[30] Dwengo, "Overview functionality of the Dwengo
board,"
http://www.dwengo.org/sites/default/files/overzicht_
dwengo-board_display_0.png, Ed., ed, 2013.

[31] Dwengo. (2013). Dwengo | Gets you started with
microcontrollers. Available: http://www.dwengo.org/

[32] RaspberryPi, "Raspberry Pi Model B,"
http://www.raspberrypi.org/wp-
content/uploads/2011/07/7513051848_9a6ef2feb8_o-
1024x682.jpg, Ed., ed, 2013.

[33] RaspberryPi. (2013). Raspberry Pi | An ARM
GNU/Linux box for $25. Take a byte! Available:
http://www.raspberrypi.org/

[34] G. Mitchell, "The Raspberry Pi single-board
computer will revolutionise computer science
teaching [For & Against]," Engineering &
Technology, vol. 7, pp. 26-26, 2012.

[35] MakeBlock, "connection,"
http://www.makeblock.cc/wp-
content/uploads/2012/11/connection1.jpg, Ed., ed,
2013.

[36] ShenzhenHuluRoboticTechnology. (2012).
Makeblock - Aluminum Robot Kit. Available:
http://makeblock.cc/

[37] T. Tam, "OpenBeam 1515 x 1000mm, clear
anodized,"
http://www.openbeamusa.com/images/products/229.j
pg, Ed., ed, 2013.

[38] T. Tam. (2013). OpenBeamUSA.com - Home.
Available: http://www.openbeamusa.com/

[39] T. Tam. (2012). OpenBeam - An open source
miniature construction system by Terence Tam —
Kickstarter. Available:
http://www.kickstarter.com/projects/ttstam/openbeam
-an-open-source-miniature-construction-sys

[40] J. Huggins, "bitPad - Tri-joint,"
http://www.flickr.com/photos/68386867@N05/63847
80527/, Ed., ed, 2011.

[41] J. Huggin. (2013). Bitbeam | The Open Source
Building Toy. Available: http://bitbeam.org/

[42] P. Jergenson. (2013). Gridbeam - open source
building system for a post carbon future. Available:
http://www.gridbeam.com/

[43] P. Jergenson, R. Jergenson, and W. Keppel, How to
Build With Grid Beam: New Society Publishers,
2008.

[44] Scratch, "Scratch 2.0: Create your own block,"
http://1.bp.blogspot.com/-
s0Z7HmigCkY/TY6VV5c1IkI/AAAAAAAAAB8/S
qyulusFK1o/s1600/jump-pixels-height.png, Ed., ed,
2011.

[45] MIT. (2012, September 10). Scratch | Home |
imagine, program, share. Available:
http://scratch.mit.edu/

[46] M. Resnick, J. Maloney, A. Monroy-Hernández, N.
Rusk, E. Eastmond, K. Brennan, et al., "Scratch:
programming for all," Communications of the ACM,
vol. 52, pp. 60-67, 2009.

[47] C. Blackmore. (2012). Enchanting. Available:
http://enchanting.robotclub.ab.ca/tiki-index.php

[48] PlayfulInvention. (2013). PicoBoard - Sensor Board
that works with MIT’s Scratch. Available:
http://www.picocricket.com/picoboard.html

[49] N. Fraser, "Blockly Sample,"
http://blockly.googlecode.com/svn/wiki/sample.png,
Ed., ed, 2013.

[50] N. Fraser. (2013). blockly - A visual programming
editor. Available: http://code.google.com/p/blockly/

[51] D. Li, "Getting Started with Arduino in ArduBlock:
Example 01," http://blog.ardublock.com/wp-
content/uploads/2012/02/untitled1.jpg, Ed., ed, 2012.

[52] D. Li. (2012). ArduBlock. Available: ardublock.com
[53] A. Bowyer. (2012). RepRap - RepRap Wiki.

Available: http://reprap.org/wiki/Main_Page
[54] P. Blikstein, "Digital Fabrication and ‘Making’in

Education: The Democratization of Invention."
[55] MakerbotIndustries. (2012). Thingiverse - Digital

Designs for Physical Objects. Available:
http://www.thingiverse.com/

[56] badBrick. (2013). Brick Mount Base Plate for
Arduino UNO R3. Available:
http://www.thingiverse.com/thing:62139

[57] J. Gonzalez-Gomez. (2011). MiniSkybot Robot V1.0.
Available: http://www.thingiverse.com/thing:7989

[58] G. Langevin. (2013). Head for Robot InMoov.
Available: http://www.thingiverse.com/thing:67676

[59] A. Gupta. (2013). Toys from Trash. Available:
http://www.arvindguptatoys.com/toys.html

[60] A. Gupta, "Aha! activities," Bhopal: Eklavya
Publication, 2007.

